18,267 research outputs found

    Exploring ā€˜eventsā€™ as an information systems research methodology

    Get PDF
    This paper builds upon existing research and commentary from a variety of disciplinary sources including Information Systems, Organisational and Management Studies, and the Social Sciences that focus upon the meaning, significance and impact of ā€˜eventsā€™ in both an organisational and a social sense. The aim of this paper is to define how the examination of the event is an appropriate, viable and useful Information Systems methodology. Our argument is that focusing on the ā€˜eventā€™ enables the researcher to more clearly observe and capture the complexity, multiplicity and mundaneity of everyday lived experience. The use and notion of ā€˜eventā€™ has the potential to reduce the methodological dilemmas associated with the micromanagement of the research process ā€“ an inherent danger of traditional and ā€˜virtual' ethnographic approaches. Similarly, this paper addresses the over-emphasis upon managerialist, structured and time-fixated praxis that is currently symptomatic of Information Systems research. All of these concerns are pivotal points of critique found within eventoriented literature. An examination of event-related theory within interpretative disciplines directs the focus of this paper towards the more specific realm of the ā€˜event sceneā€™. The notion of the ā€˜event sceneā€™ originated in the action based (and anti-academy) imperatives of the Situationists and emerged in an academic sense as critical situational analysis. Event scenes are a focus for contemporary critical theory where they are utilised as a means of representing theoried inquiry in order to loosen the restrictions that historical and temporally bound analysis imposes upon most interpretative approaches. The use of event scenes as the framework for critiquing established conceptual assumptions is exemplified by their use in CTheory. In this journal's version and articulation of the event scene poetry, commentary, multi-vocal narrative and other techniques are legitimated as academic forms. These various forms of multi-dimensional expression are drawn upon to enrich the understandings of the ā€˜eventā€™, to extricate its meaning and to provide a sense of the moment from which the point of analysis stems. The objective of this paper is to advocate how Information Systems research can (or should) utilize an event scene oriented methodology

    From search engine optimisation to search engine marketing management: development of a new area for information systems research

    Get PDF
    Search Engine Optimisation was a term used by web developers in the late 90s to highlight the importance of increasing a websiteā€™s position in search enginesā€™ results. Further development of the Internet in terms of the diversity of its users and uses such as e-commerce, blogging and wikis have highlighted the need for technical staff to work more closely with marketing professionals resulting in a new area of work ā€“ Search Engine Marketing Management. The paper highlights the emerging role of Search Engine Marketing Management as a new and increasingly important area for future information systems researchers and research. Reaching beyond the 'simple' undifferentiated goal of increasing visitors to a website, a mature perspective of marketing is developing - that of realising strategic marketing objectives. The practical contribution of this paper is found in the development of awareness among management roles of the importance and nuances of search engines and the tactics required to harness the benefits of multiple online communication channels within organisational marketing strategy

    Field-guided proton acceleration at reconnecting X-points in flares

    Get PDF
    An explicitly energy-conserving full orbit code CUEBIT, developed originally to describe energetic particle effects in laboratory fusion experiments, has been applied to the problem of proton acceleration in solar flares. The model fields are obtained from solutions of the linearised MHD equations for reconnecting modes at an X-type neutral point, with the additional ingredient of a longitudinal magnetic field component. To accelerate protons to the highest observed energies on flare timescales, it is necessary to invoke anomalous resistivity in the MHD solution. It is shown that the addition of a longitudinal field component greatly increases the efficiency of ion acceleration, essentially because it greatly reduces the magnitude of drift motions away from the vicinity of the X-point, where the accelerating component of the electric field is largest. Using plasma parameters consistent with flare observations, we obtain proton distributions extending up to gamma-ray-emitting energies (>1MeV). In some cases the energy distributions exhibit a bump-on-tail in the MeV range. In general, the shape of the distribution is sensitive to the model parameters.Comment: 14 pages, 4 figures, accepted for publication in Solar Physic

    A theoretical investigation of the effect of proliferation & adhesion on monoclonal conversion in the colonic crypt

    Get PDF
    The surface epithelium lining the intestinal tract renews itself rapidly by a coordinated programme of cell proliferation, migration and differentiation events that is initiated in the crypts of LieberkĆ¼hn. It is generally believed that colorectal cancer arises due to mutations that disrupt the normal cellular dynamics of the crypts. Using a spatially structured cell-based model of a colonic crypt, we investigate the likelihood that the progeny of a mutated cell will dominate, or be sloughed out of, a crypt. Our approach is to perform multiple simulations, varying the spatial location of the initial mutation, and the proliferative and adhesive properties of the mutant cells, to obtain statistical distributions for the probability of their domination. Our simulations lead us to make a number of predictions. The process of monoclonal conversion always occurs, and does not require that the cell which initially gave rise to the population remains in the crypt. Mutations occurring more than one to two cells from the base of the crypt are unlikely to become the dominant clone. The probability of a mutant clone persisting in the crypt is sensitive to dysregulation of adhesion. By comparing simulation results with those from a simple one-dimensional stochastic model of population dynamics at the base of the crypt, we infer that this sensitivity is due to direct competition between wild-type and mutant cells at the base of the crypt. We also predict that increases in the extent of the spatial domain in which the mutant cells proliferate can give rise to counter-intuitive, non-linear changes to the probability of their fixation, due to effects that cannot be captured in simpler models

    The supernova-regulated ISM. I. The multi-phase structure

    Get PDF
    We simulate the multi-phase interstellar medium randomly heated and stirred by supernovae, with gravity, differential rotation and other parameters of the solar neighbourhood. Here we describe in detail both numerical and physical aspects of the model, including injection of thermal and kinetic energy by SN explosions, radiative cooling, photoelectric heating and various transport processes. With 3D domain extending 1 kpc^2 horizontally and 2 kpc vertically, the model routinely spans gas number densities 10^-5 - 10^2 cm^-3, temperatures 10-10^8 K, local velocities up to 10^3 km s^-1 (with Mach number up to 25). The thermal structure of the modelled ISM is classified by inspection of the joint probability density of the gas number density and temperature. We confirm that most of the complexity can be captured in terms of just three phases, separated by temperature borderlines at about 10^3 K and 5x10^5 K. The probability distribution of gas density within each phase is approximately lognormal. We clarify the connection between the fractional volume of a phase and its various proxies, and derive an exact relation between the fractional volume and the filling factors defined in terms of the volume and probabilistic averages. These results are discussed in both observational and computational contexts. The correlation scale of the random flows is calculated from the velocity autocorrelation function; it is of order 100 pc and tends to grow with distance from the mid-plane. We use two distinct parameterizations of radiative cooling to show that the multi-phase structure of the gas is robust, as it does not depend significantly on this choice.Comment: 28 pages, 22 figures and 8 table

    A theoretical investigation of the effect of proliferation and\ud adhesion on monoclonal conversion in the colonic crypt

    Get PDF
    Colorectal cancers are initiated by the accumulation of mutations in the colonic epithelium. Using a spatially structured cell-based model of a colonic crypt, we investigate the likelihood that the progeny of a mutated cell will dominate, or be sloughed out of, a crypt. Our approach is to perform multiple simulations, varying the spatial location of the initial mutation, and its proliferative and adhesive properties, to obtain statistical distributions for the probability of domination. Our simulations lead us to make a number of predictions. The process of monoclonal conversion always occurs, and does not require that the cell which initially gave rise to the population remains in the crypt. Mutations occurring more than one to two cells from the base of the crypt are unlikely to become the dominant clone. The probability of a mutant clone persisting in the crypt is sensitive to dysregulation of adhesion, and comparison with a one-dimensional model suggests that this is caused by competition directly at the base of the crypt.\ud We also predict that increases in the extent of the spatial domain in which the mutant cells proliferate cause counter-intuitive non-linear changes to the probability of its fixation, due to effects that cannot be captured in simpler models

    On the Spatial Distribution of Hard X-Rays from Solar Flare Loops

    Full text link
    The aim of this paper is to investigate the spatial structure of the impulsive phase hard X-ray emission from solar flares. This work is motivated by the YOHKOH and the forthcoming HESSI observations. Summarizing past results, it is shown that the transport effects can account for the observations by inhomogeneous loops where there is a strong field convergence and/or density enhancement at the top of the flaring loop. Scattering by plasma turbulence at the acceleration site or pancake type pitch angle distribution of the accelerated electrons can also give rise to enhanced emission at the loop tops. These could be a natural consequence of acceleration by plasma waves. This paper considers a general case of stochastic scattering and acceleration that leads to an isotropic pitch angle distribution and an enhanced emission from the loop tops or the acceleration site. Following the formalism developed in earlier papers the strength and the spectrum of the radiation expected from the acceleration site and the foot points are evaluated and their dependence on the parameters describing the acceleration process and the flare plasma are determined. The theoretical ratio of these two intensities and relative values of their spectral indices are compared with the YOHKOH observations, demonstrating that the above mentioned parameters can be constrained with such observations. It is shown that future high spatial and spectral resolution observations, for example those expected from HESSI, can begin to distinguish between different models and constrain their parameters.Comment: 37 pages with 20 figures. Accepted for publication in ApJ http://www.astronomy.stanford.ed
    • ā€¦
    corecore